

 Navigation

 	
 index

 	XIO stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/xio/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/xio/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	XIO stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		XIO stable documentation »

Status

[image: Circle CI] [https://circleci.com/gh/xjdr/xio]

[image: Coverage Status] [https://coveralls.io/github/xjdr/xio?branch=master]

xio

High performance Multithreaded non-blocking Async I/O for Java 8

Simplicity Leads to Purity - Jiro

Xio is a network library used to build high performance, scalable network applications

Full readme and docs coming soon, to see sample uses, take a look at the tests.

working with the codebase

lombok

This project uses the following lombok features:

		https://projectlombok.org/features/GetterSetter.html

		https://projectlombok.org/features/ToString.html

		https://projectlombok.org/features/Data.html

		https://projectlombok.org/features/Value.html

		https://projectlombok.org/features/Builder.html

		https://projectlombok.org/features/Log.html

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		XIO stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

TODO.html

 Navigation

 		
 index

 		XIO stable documentation »

TODO

		Create default implementations for each of the most important interfaces

		Add better tests around config

		Add better testing around client failure modes

		Add full HttpParser for BBtoHttpResponse

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

StyleGuide.html

 Navigation

 		
 index

 		XIO stable documentation »

Java Style Guide

[This guide is taken from twitter commons style guide and modified to fit this project]

The intention of this guide is to provide a set of conventions that encourage good code.
It is the distillation of many combined man-years of software engineering and Java development
experience. While some suggestions are more strict than others, you should always practice good
judgement.

If following the guide causes unnecessary hoop-jumping or otherwise less-readable code,
readability trumps the guide. However, if the more ‘readable’ variant comes with
perils or pitfalls, readability may be sacrificed.

In general, much of our style and conventions mirror the
Code Conventions for the Java Programming Language [http://www.oracle.com/technetwork/java/codeconvtoc-136057.html]
and Google’s Java Style Guide [https://google-styleguide.googlecode.com/svn/trunk/javaguide.html].

[TOC]

Recommended reading

		Effective Java [http://www.amazon.com/Effective-Java-Edition-Joshua-Bloch/dp/0321356683]

		Java Concurrency in Practice [http://jcip.net/]

		Code Complete 2 [http://www.stevemcconnell.com/cc.htm]

Not java-specific, but a good handbook for programming best-practices.

Coding style

Formatting

Use line breaks wisely

There are generally two reasons to insert a line break:

		Your statement exceeds the column limit.

		You want to logically separate a thought.

Writing code is like telling a story. Written language constructs like chapters, paragraphs,
and punctuation (e.g. semicolons, commas, periods, hyphens) convey thought hierarchy and
separation. We have similar constructs in programming languages; you should use them to your
advantage to effectively tell the story to those reading the code.

Indent style

We use the “one true brace style” (1TBS [http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS]).
Indent size is 2 columns.

:::java
// Like this.
if (x < 0) {
 negative(x);
} else {
 nonnegative(x);
}

// Not like this.
if (x < 0)
 negative(x);

// Also not like this.
if (x < 0) negative(x);

Continuation indent is 4 columns. Nested continuations may add 4 columns or 2 at each level.

:::java
// Bad.
// - Line breaks are arbitrary.
// - Scanning the code makes it difficult to piece the message together.
throw new IllegalStateException("Failed to process request" + request.getId()
 + " for user " + user.getId() + " query: '" + query.getText()
 + "'");

// Good.
// - Each component of the message is separate and self-contained.
// - Adding or removing a component of the message requires minimal reformatting.
throw new IllegalStateException("Failed to process"
 + " request " + request.getId()
 + " for user " + user.getId()
 + " query: '" + query.getText() + "'");

Don’t break up a statement unnecessarily.

:::java
// Bad.
final String value =
 otherValue;

// Good.
final String value = otherValue;

Method declaration continuations.

:::java
// Sub-optimal since line breaks are arbitrary and only filling lines.
String downloadAnInternet(Internet internet, Tubes tubes,
 Blogosphere blogs, Amount<Long, Data> bandwidth) {
 tubes.download(internet);
 ...
}

// Acceptable.
String downloadAnInternet(Internet internet, Tubes tubes, Blogosphere blogs,
 Amount<Long, Data> bandwidth) {
 tubes.download(internet);
 ...
}

// Nicer, as the extra newline gives visual separation to the method body.
String downloadAnInternet(Internet internet, Tubes tubes, Blogosphere blogs,
 Amount<Long, Data> bandwidth) {

 tubes.download(internet);
 ...
}

// Also acceptable, but may be awkward depending on the column depth of the opening parenthesis.
public String downloadAnInternet(Internet internet,
 Tubes tubes,
 Blogosphere blogs,
 Amount<Long, Data> bandwidth) {
 tubes.download(internet);
 ...
}

// Preferred for easy scanning and extra column space.
public String downloadAnInternet(
 Internet internet,
 Tubes tubes,
 Blogosphere blogs,
 Amount<Long, Data> bandwidth) {

 tubes.download(internet);
 ...
}

Chained method calls

:::java
// Bad.
// - Line breaks are based on line length, not logic.
Iterable<Module> modules = ImmutableList.<Module>builder().add(new LifecycleModule())
 .add(new AppLauncherModule()).addAll(application.getModules()).build();

// Better.
// - Calls are logically separated.
// - However, the trailing period logically splits a statement across two lines.
Iterable<Module> modules = ImmutableList.<Module>builder().
 add(new LifecycleModule()).
 add(new AppLauncherModule()).
 addAll(application.getModules()).
 build();

// Good.
// - Method calls are isolated to a line.
// - The proper location for a new method call is unambiguous.
Iterable<Module> modules = ImmutableList.<Module>builder()
 .add(new LifecycleModule())
 .add(new AppLauncherModule())
 .addAll(application.getModules())
 .build();

No tabs

An oldie, but goodie. We’ve found tab characters to cause more harm than good.

100 column limit

You should follow the convention set by the body of code you are working with.
We tend to use 100 columns for a balance between fewer continuation lines but still easily
fitting two editor tabs side-by-side on a reasonably-high resolution display.

CamelCase for types, camelCase for variables, UPPER_SNAKE for constants

No trailing whitespace

Trailing whitespace characters, while logically benign, add nothing to the program.
However, they do serve to frustrate developers when using keyboard shortcuts to navigate code.

Field, class, and method declarations

Modifier order

We follow the Java Language Specification [http://docs.oracle.com/javase/specs/] for modifier
ordering (sections
8.1.1 [http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.1],
8.3.1 [http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1] and
8.4.3 [http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.3]).

:::java
// Bad.
final volatile private String value;

// Good.
private final volatile String value;

Variable naming

Extremely short variable names should be reserved for instances like loop indices.

:::java
// Bad.
// - Field names give little insight into what fields are used for.
class User {
 private final int a;
 private final String m;

 ...
}

// Good.
class User {
 private final int ageInYears;
 private final String maidenName;

 ...
}

Include units in variable names

:::java
// Bad.
long pollInterval;
int fileSize;

// Good.
long pollIntervalMs;
int fileSizeGb.

// Better.
// - Unit is built in to the type.
// - The field is easily adaptable between units, readability is high.
Amount<Long, Time> pollInterval;
Amount<Integer, Data> fileSize;

Don’t embed metadata in variable names

A variable name should describe the variable’s purpose. Adding extra information like scope and
type is generally a sign of a bad variable name.

Avoid embedding the field type in the field name.

:::java
// Bad.
Map<Integer, User> idToUserMap;
String valueString;

// Good.
Map<Integer, User> usersById;
String value;

Also avoid embedding scope information in a variable. Hierarchy-based naming suggests that a class
is too complex and should be broken apart.

:::java
// Bad.
String _value;
String mValue;

// Good.
String value;

Space pad operators and equals.

:::java
// Bad.
// - This offers poor visual separation of operations.
int foo=a+b+1;

// Good.
int foo = a + b + 1;

Be explicit about operator precedence

Don’t make your reader open the
spec [http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html] to confirm,
if you expect a specific operation ordering, make it obvious with parenthesis.

:::java
// Bad.
return a << 8 * n + 1 | 0xFF;

// Good.
return (a << (8 * n) + 1) | 0xFF;

It’s even good to be really obvious.

:::java
if ((values != null) && (10 > values.size())) {
 ...
}

Documentation

The more visible a piece of code is (and by extension - the farther away consumers might be),
the more documentation is needed.

“I’m writing a report about...”

Your elementary school teacher was right - you should never start a statement this way.
Likewise, you shouldn’t write documentation this way.

:::java
// Bad.
/**
 * This is a class that implements a cache. It does caching for you.
 */
class Cache {
 ...
}

// Good.
/**
 * A volatile storage for objects based on a key, which may be invalidated and discarded.
 */
class Cache {
 ...
}

Documenting a class

Documentation for a class may range from a single sentence
to paragraphs with code examples. Documentation should serve to disambiguate any conceptual
blanks in the API, and make it easier to quickly and correctly use your API.
A thorough class doc usually has a one sentence summary and, if necessary,
a more detailed explanation.

:::java
/**
 * An RPC equivalent of a unix pipe tee. Any RPC sent to the tee input is guaranteed to have
 * been sent to both tee outputs before the call returns.
 *
 * @param <T> The type of the tee'd service.
 */
public class RpcTee<T> {
 ...
}

Documenting a method

A method doc should tell what the method does. Depending on the argument types, it may
also be important to document input format.

:::java
// Bad.
// - The doc tells nothing that the method declaration didn't.
// - This is the 'filler doc'. It would pass style checks, but doesn't help anybody.
/**
 * Splits a string.
 *
 * @param s A string.
 * @return A list of strings.
 */
List<String> split(String s);

// Better.
// - We know what the method splits on.
// - Still some undefined behavior.
/**
 * Splits a string on whitespace.
 *
 * @param s The string to split. An {@code null} string is treated as an empty string.
 * @return A list of the whitespace-delimited parts of the input.
 */
List<String> split(String s);

// Great.
// - Covers yet another edge case.
/**
 * Splits a string on whitespace. Repeated whitespace characters are collapsed.
 *
 * @param s The string to split. An {@code null} string is treated as an empty string.
 * @return A list of the whitespace-delimited parts of the input.
 */
List<String> split(String s);

Be professional

We’ve all encountered frustration when dealing with other libraries, but ranting about it doesn’t
do you any favors. Suppress the expletives and get to the point.

:::java
// Bad.
// I hate xml/soap so much, why can't it do this for me!?
try {
 userId = Integer.parseInt(xml.getField("id"));
} catch (NumberFormatException e) {
 ...
}

// Good.
// TODO(Jim): Tuck field validation away in a library.
try {
 userId = Integer.parseInt(xml.getField("id"));
} catch (NumberFormatException e) {
 ...
}

Don’t document overriding methods (usually)

:::java
interface Database {
 /**
 * Gets the installed version of the database.
 *
 * @return The database version identifier.
 */
 String getVersion();
}

// Bad.
// - Overriding method doc doesn't add anything.
class PostgresDatabase implements Database {
 /**
 * Gets the installed version of the database.
 *
 * @return The database version identifier.
 */
 @Override
 public String getVersion() {
 ...
 }
}

// Good.
class PostgresDatabase implements Database {
 @Override
 public int getVersion();
}

// Great.
// - The doc explains how it differs from or adds to the interface doc.
class TwitterDatabase implements Database {
 /**
 * Semantic version number.
 *
 * @return The database version in semver format.
 */
 @Override
 public String getVersion() {
 ...
 }
}

Use javadoc features

No author tags

Code can change hands numerous times in its lifetime, and quite often the original author of a
source file is irrelevant after several iterations. We find it’s better to trust commit
history and OWNERS files to determine ownership of a body of code.

Imports

Import ordering

Imports are grouped by top-level package, with blank lines separating groups. Static imports are
grouped in the same way, in a section below traditional imports.

:::java
import java.*
import javax.*

import scala.*

import com.*

import net.*

import org.*

import com.twitter.*

import static *

No wildcard imports

Wildcard imports make the source of an imported class less clear. They also tend to hide a high
class fan-out [http://en.wikipedia.org/wiki/Coupling_(computer_programming)#Module_coupling].

See also texas imports

:::java
// Bad.
// - Where did Foo come from?
import com.twitter.baz.foo.*;
import com.twitter.*;

interface Bar extends Foo {
 ...
}

// Good.
import com.twitter.baz.foo.BazFoo;
import com.twitter.Foo;

interface Bar extends Foo {
 ...
}

Use annotations wisely

@Nullable

By default - disallow null. When a variable, parameter, or method return value may be null,
be explicit about it by marking
@Nullable [http://code.google.com/p/jsr-305/source/browse/trunk/ri/src/main/java/javax/annotation/Nullable.java?r=24].
This is advisable even for fields/methods with private visibility.

:::java
class Database {
 @Nullable private Connection connection;

 @Nullable
 Connection getConnection() {
 return connection;
 }

 void setConnection(@Nullable Connection connection) {
 this.connection = connection;
 }
}

@VisibleForTesting

Sometimes it makes sense to hide members and functions in general, but they may still be required
for good test coverage. It’s usually preferred to make these package-private and tag with
@VisibleForTesting [http://docs.guava-libraries.googlecode.com/git-history/v11.0.2/javadoc/com/google/common/annotations/VisibleForTesting.html]
to indicate the purpose for visibility.

Constants are a great example of things that are frequently exposed in this way.

:::java
// Bad.
// - Any adjustments to field names need to be duplicated in the test.
class ConfigReader {
 private static final String USER_FIELD = "user";

 Config parseConfig(String configData) {
 ...
 }
}
public class ConfigReaderTest {
 @Test
 public void testParseConfig() {
 ...
 assertEquals(expectedConfig, reader.parseConfig("{user: bob}"));
 }
}

// Good.
// - The test borrows directly from the same constant.
class ConfigReader {
 @VisibleForTesting static final String USER_FIELD = "user";

 Config parseConfig(String configData) {
 ...
 }
}
public class ConfigReaderTest {
 @Test
 public void testParseConfig() {
 ...
 assertEquals(expectedConfig,
 reader.parseConfig(String.format("{%s: bob}", ConfigReader.USER_FIELD)));
 }
}

Use interfaces

Interfaces decouple functionality from implementation, allowing you to use multiple implementations
without changing consumers.
Interfaces are a great way to isolate packages - provide a set of interfaces, and keep your
implementations package private.

Many small interfaces can seem heavyweight, since you end up with a large number of source files.
Consider the pattern below as an alternative.

:::java
interface FileFetcher {
 File getFile(String name);

 // All the benefits of an interface, with little source management overhead.
 // This is particularly useful when you only expect one implementation of an interface.
 static class HdfsFileFetcher implements FileFetcher {
 @Override File getFile(String name) {
 ...
 }
 }
}

Leverage or extend existing interfaces

Sometimes an existing interface allows your class to easily ‘plug in’ to other related classes.
This leads to highly cohesive [http://en.wikipedia.org/wiki/Cohesion_(computer_science)] code.

:::java
// An unfortunate lack of consideration. Anyone who wants to interact with Blobs will need to
// write specific glue code.
class Blobs {
 byte[] nextBlob() {
 ...
 }
}

// Much better. Now the caller can easily adapt this to standard collections, or do more
// complex things like filtering.
class Blobs implements Iterable<byte[]> {
 @Override
 Iterator<byte[]> iterator() {
 ...
 }
}

Warning - don’t bend the definition of an existing interface to make this work. If the interface
doesn’t conceptually apply cleanly, it’s best to avoid this.

Writing testable code

Writing unit tests doesn’t have to be hard. You can make it easy for yourself if you keep
testability in mind while designing your classes and interfaces.

Fakes and mocks

When testing a class, you often need to provide some kind of canned functionality as a replacement
for real-world behavior. For example, rather than fetching a row from a real database, you have
a test row that you want to return. This is most commonly performed with a fake object or a mock
object. While the difference sounds subtle, mocks have major benefits over fakes.

:::java
class RpcClient {
 RpcClient(HttpTransport transport) {
 ...
 }
}

// Bad.
// - Our test has little control over method call order and frequency.
// - We need to be careful that changes to HttpTransport don't disable FakeHttpTransport.
// - May require a significant amount of code.
class FakeHttpTransport extends HttpTransport {
 @Override
 void writeBytes(byte[] bytes) {
 ...
 }

 @Override
 byte[] readBytes() {
 ...
 }
}

public class RpcClientTest {
 private RpcClient client;
 private FakeHttpTransport transport;

 @Before
 public void setUp() {
 transport = new FakeHttpTransport();
 client = new RpcClient(transport);
 }

 ...
}

interface Transport {
 void writeBytes(byte[] bytes);
 byte[] readBytes();
}

class RpcClient {
 RpcClient(Transport transport) {
 ...
 }
}

// Good.
// - We can mock the interface and have very fine control over how it is expected to be used.
public class RpcClientTest {
 private RpcClient client;
 private Transport transport;

 @Before
 public void setUp() {
 transport = EasyMock.createMock(Transport.class);
 client = new RpcClient(transport);
 }

 ...
}

Let your callers construct support objects

:::java
// Bad.
// - A unit test needs to manage a temporary file on disk to test this class.
class ConfigReader {
 private final InputStream configStream;
 ConfigReader(String fileName) throws IOException {
 this.configStream = new FileInputStream(fileName);
 }
}

// Good.
// - Testing this class is as easy as using ByteArrayInputStream with a String.
class ConfigReader {
 private final InputStream configStream;
 ConfigReader(InputStream configStream){
 this.configStream = checkNotNull(configStream);
 }
}

Testing multithreaded code

Testing code that uses multiple threads is notoriously hard. When approached carefully, however,
it can be accomplished without deadlocks or unnecessary time-wait statements.

If you are testing code that needs to perform periodic background tasks
(such as with a
ScheduledExecutorService [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledExecutorService.html]),
consider mocking the service and/or manually triggering the tasks from your tests, and
avoiding the actual scheduling.
If you are testing code that submits tasks to an
ExecutorService [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html],
you might consider allowing the executor to be injected, and supplying a
single-thread executor [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html#newSingleThreadExecutor()] in tests.

In cases where multiple threads are inevitable,
java.util.concurrent [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html]
provides some useful libraries to help manage lock-step execution.

For example,
LinkedBlockingDeque [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingDeque.html]
can provide synchronization between producer and consumer when an asynchronous operation is
performed.
CountDownLatch [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html]
is useful for state/operation synchronization when a queue does not apply.

Testing antipatterns

Time-dependence

Code that captures real wall time can be difficult to test repeatably, especially when time deltas
are meaningful. Therefore, try to avoid new Date(), System.currentTimeMillis(), and
System.nanoTime(). A suitable replacement for these is
Clock [https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/Clock.java]; using
Clock.SYSTEM_CLOCK [https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/Clock.java#L32]
when running normally, and
FakeClock [https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/testing/FakeClock.java]
in tests.

The hidden stress test

Avoid writing unit tests that attempt to verify a certain amount of performance. This type of
testing should be handled separately, and run in a more controlled environment than unit tests
typically are.

Thread.sleep()

Sleeping is rarely warranted, especially in test code. Sleeping is expressing an expectation that
something else is happening while the executing thread is suspended. This quickly leads to
brittleness; for example if the background thread was not scheduled while you were sleeping.

Sleeping in tests is also bad because it sets a firm lower bound on how fast tests can execute.
No matter how fast the machine is, a test that sleeps for one second can never execute in less than
one second. Over time, this leads to very long test execution cycles.

Avoid randomness in tests

Using random values may seem like a good idea in a test, as it allows you to cover more test cases
with less code. The problem is that you lose control over which test cases you’re covering. When
you do encounter a test failure, it may be difficult to reproduce. Pseudorandom input with a fixed
seed is slightly better, but in practice rarely improves test coverage. In general it’s better to
use fixed input data that exercises known edge cases.

Best practices

Defensive programming

Avoid assert

We avoid the assert statement since it can be
disabled [http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable]
at execution time, and prefer to enforce these types of invariants at all times.

See also preconditions

Preconditions

Preconditions checks are a good practice, since they serve as a well-defined barrier against bad
input from callers. As a convention, object parameters to public constructors and methods should
always be checked against null, unless null is explicitly allowed.

See also be wary of null, @Nullable

:::java
// Bad.
// - If the file or callback are null, the problem isn't noticed until much later.
class AsyncFileReader {
 void readLater(File file, Closure<String> callback) {
 scheduledExecutor.schedule(new Runnable() {
 @Override public void run() {
 callback.execute(readSync(file));
 }
 }, 1L, TimeUnit.HOURS);
 }
}

// Good.
class AsyncFileReader {
 void readLater(File file, Closure<String> callback) {
 checkNotNull(file);
 checkArgument(file.exists() && file.canRead(), "File must exist and be readable.");
 checkNotNull(callback);

 scheduledExecutor.schedule(new Runnable() {
 @Override public void run() {
 callback.execute(readSync(file));
 }
 }, 1L, TimeUnit.HOURS);
 }
}

Minimize visibility

In a class API, you should support access to any methods and fields that you make accessible.
Therefore, only expose what you intend the caller to use. This can be imperative when
writing thread-safe code.

:::java
public class Parser {
 // Bad.
 // - Callers can directly access and mutate, possibly breaking internal assumptions.
 public Map<String, String> rawFields;

 // Bad.
 // - This is probably intended to be an internal utility function.
 public String readConfigLine() {
 ..
 }
}

// Good.
// - rawFields and the utility function are hidden
// - The class is package-private, indicating that it should only be accessed indirectly.
class Parser {
 private final Map<String, String> rawFields;

 private String readConfigLine() {
 ..
 }
}

Favor immutability

Mutable objects carry a burden - you need to make sure that those who are able to mutate it are
not violating expectations of other users of the object, and that it’s even safe for them to modify.

:::java
// Bad.
// - Anyone with a reference to User can modify the user's birthday.
// - Calling getAttributes() gives mutable access to the underlying map.
public class User {
 public Date birthday;
 private final Map<String, String> attributes = Maps.newHashMap();

 ...

 public Map<String, String> getAttributes() {
 return attributes;
 }
}

// Good.
public class User {
 private final Date birthday;
 private final Map<String, String> attributes = Maps.newHashMap();

 ...

 public Map<String, String> getAttributes() {
 return ImmutableMap.copyOf(attributes);
 }

 // If you realize the users don't need the full map, you can avoid the map copy
 // by providing access to individual members.
 @Nullable
 public String getAttribute(String attributeName) {
 return attributes.get(attributeName);
 }
}

Be wary of null

Use @Nullable where prudent, but favor
Optional [http://docs.guava-libraries.googlecode.com/git-history/v11.0.2/javadoc/com/google/common/base/Optional.html]
over @Nullable. Optional provides better semantics around absence of a value.

Clean up with finally

:::java
FileInputStream in = null;
try {
 ...
} catch (IOException e) {
 ...
} finally {
 Closeables.closeQuietly(in);
}

Even if there are no checked exceptions, there are still cases where you should use try/finally
to guarantee resource symmetry.

:::java
// Bad.
// - Mutex is never unlocked.
mutex.lock();
throw new NullPointerException();
mutex.unlock();

// Good.
mutex.lock();
try {
 throw new NullPointerException();
} finally {
 mutex.unlock();
}

// Bad.
// - Connection is not closed if sendMessage throws.
if (receivedBadMessage) {
 conn.sendMessage("Bad request.");
 conn.close();
}

// Good.
if (receivedBadMessage) {
 try {
 conn.sendMessage("Bad request.");
 } finally {
 conn.close();
 }
}

Clean code

Disambiguate

Favor readability - if there’s an ambiguous and unambiguous route, always favor unambiguous.

:::java
// Bad.
// - Depending on the font, it may be difficult to discern 1001 from 100l.
long count = 100l + n;

// Good.
long count = 100L + n;

Remove dead code

Delete unused code (imports, fields, parameters, methods, classes). They will only rot.

Use general types

When declaring fields and methods, it’s better to use general types whenever possible.
This avoids implementation detail leak via your API, and allows you to change the types used
internally without affecting users or peripheral code.

:::java
// Bad.
// - Implementations of Database must match the ArrayList return type.
// - Changing return type to Set<User> or List<User> could break implementations and users.
interface Database {
 ArrayList<User> fetchUsers(String query);
}

// Good.
// - Iterable defines the minimal functionality required of the return.
interface Database {
 Iterable<User> fetchUsers(String query);
}

Always use type parameters

Java 5 introduced support for
generics [http://docs.oracle.com/javase/tutorial/java/generics/index.html]. This added type
parameters to collection types, and allowed users to implement their own type-parameterized classes.
Backwards compatibility and
type erasure [http://docs.oracle.com/javase/tutorial/java/generics/erasure.html] mean that
type parameters are optional, however depending on usage they do result in compiler warnings.

We conventionally include type parameters on every declaration where the type is parameterized.
Even if the type is unknown, it’s preferable to include a wildcard or wide type.

Stay out of Texas [http://en.wikipedia.org/wiki/Texas-sized]

Try to keep your classes bite-sized and with clearly-defined responsibilities. This can be
really hard as a program evolves.

		texas imports

		texas constructors: Can the class be cleanly broken apart?

If not, consider builder pattern.

		texas methods

We could do some science and come up with a statistics-driven threshold for each of these, but it
probably wouldn’t be very useful. This is usually just a gut instinct, and these are traits
of classes that are too large or complex and should be broken up.

Avoid typecasting

Typecasting is a sign of poor class design, and can often be avoided. An obvious exception here is
overriding
equals [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)].

Use final fields

See also favor immutability

Final fields are useful because they declare that a field may not be reassigned. When it comes to
checking for thread-safety, a final field is one less thing that needs to be checked.

Avoid mutable static state

Mutable static state is rarely necessary, and causes loads of problems when present. A very simple
case that mutable static state complicates is unit testing. Since unit tests runs are typically in
a single VM, static state will persist through all test cases. In general, mutable static state is
a sign of poor class design.

Exceptions

Catch narrow exceptions

Sometimes when using try/catch blocks, it may be tempting to just catch Exception, Error,
or Throwable so you don’t have to worry about what type was thrown. This is usually a bad idea,
as you can end up catching more than you really wanted to deal with. For example,
catch Exception would capture NullPointerException, and catch Throwable would capture
OutOfMemoryError.

:::java
// Bad.
// - If a RuntimeException happens, the program continues rather than aborting.
try {
 storage.insertUser(user);
} catch (Exception e) {
 LOG.error("Failed to insert user.");
}

try {
 storage.insertUser(user);
} catch (StorageException e) {
 LOG.error("Failed to insert user.");
}

Don’t swallow exceptions

An empty catch block is usually a bad idea, as you have no signal of a problem. Coupled with
narrow exception violations, it’s a recipe for disaster.

When interrupted, reset thread interrupted state

Many blocking operations throw
InterruptedException [http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html]
so that you may be awaken for events like a JVM shutdown. When catching InterruptedException,
it is good practice to ensure that the thread interrupted state is preserved.

IBM has a good article [http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html] on
this topic.

:::java
// Bad.
// - Surrounding code (or higher-level code) has no idea that the thread was interrupted.
try {
 lock.tryLock(1L, TimeUnit.SECONDS)
} catch (InterruptedException e) {
 LOG.info("Interrupted while doing x");
}

// Good.
// - Interrupted state is preserved.
try {
 lock.tryLock(1L, TimeUnit.SECONDS)
} catch (InterruptedException e) {
 LOG.info("Interrupted while doing x");
 Thread.currentThread().interrupt();
}

Throw appropriate exception types

Let your API users obey catch narrow exceptions, don’t throw Exception.
Even if you are calling another naughty API that throws Exception, at least hide that so it doesn’t
bubble up even further. You should also make an effort to hide implementation details from your
callers when it comes to exceptions.

:::java
// Bad.
// - Caller is forced to catch Exception, trapping many unnecessary types of issues.
interface DataStore {
 String fetchValue(String key) throws Exception;
}

// Better.
// - The interface leaks details about one specific implementation.
interface DataStore {
 String fetchValue(String key) throws SQLException, UnknownHostException;
}

// Good.
// - A custom exception type insulates the user from the implementation.
// - Different implementations aren't forced to abuse irrelevant exception types.
interface DataStore {
 String fetchValue(String key) throws StorageException;

 static class StorageException extends Exception {
 ...
 }
}

Use newer/better libraries

StringBuilder over StringBuffer

StringBuffer [http://docs.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html] is thread-safe,
which is rarely needed.

ScheduledExecutorService over Timer

Drawing from Java Concurrency in Practice (directly borrowed from
a stackoverflow
question [http://stackoverflow.com/questions/409932/java-timer-vs-executorservice]).

		Timer can be sensitive to changes in the system clock, ScheduledThreadPoolExecutor is not

		Timer has only one execution thread, so long-running task can delay other tasks.

		ScheduledThreadPoolExecutor can be configured with multiple threads and a ThreadFactory

See manage threads properly

		Exceptions thrown in TimerTask kill the thread, rendering the Timer ineffective.

		ThreadPoolExecutor provides afterExceute so you can explicitly handle execution results.

List over Vector

Vector is synchronized, which is often unneeded. When synchronization is desirable,
a synchronized list [http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedList(java.util.List)]
can usually serve as a drop-in replacement for Vector.

equals() and hashCode()

If you override one, you must implement both.
See the equals/hashCode
contract [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()]

[Objects.equal()](http://docs.guava-libraries.googlecode.com/git-history/v11.0.2/javadoc/com/google/common/base/Objects.html#equal(java.lang.Object, java.lang.Object))
and
Objects.hashCode() [http://docs.guava-libraries.googlecode.com/git-history/v11.0.2/javadoc/com/google/common/base/Objects.html#hashCode(java.lang.Object...)]
make it very easy to follow these contracts.

Premature optimization is the root of all evil.

Donald Knuth is a smart guy, and he had a few things to
say [http://c2.com/cgi/wiki?PrematureOptimization] on the topic.

Unless you have strong evidence that an optimization is necessary, it’s usually best to implement
the un-optimized version first (possibly leaving notes about where optimizations could be made).

So before you spend a week writing your memory-mapped compressed huffman-encoded hashmap, use the
stock stuff first and measure.

TODOs

Leave TODOs early and often

A TODO isn’t a bad thing - it’s signaling a future developer (possibly yourself) that a
consideration was made, but omitted for various reasons. It can also serve as a useful signal when
debugging.

Leave no TODO unassigned

TODOs should have owners, otherwise they are unlikely to ever be resolved.

:::java
// Bad.
// - TODO is unassigned.
// TODO: Implement request backoff.

// Good.
// TODO(George Washington): Implement request backoff.

Adopt TODOs

You should adopt an orphan if the owner has left the company/project, or if you make
modifications to the code directly related to the TODO topic.

Obey the Law of Demeter (LoD [http://en.wikipedia.org/wiki/Law_of_Demeter])

The Law of Demeter is most obviously violated by breaking the
one dot rule [http://en.wikipedia.org/wiki/Law_of_Demeter#In_object-oriented_programming], but
there are other code structures that lead to violations of the spirit of the law.

In classes

Take what you need, nothing more. This often relates to texas constructors
but it can also hide in constructors or methods that take few parameters. The key idea is
to defer assembly to the layers of the code that know enough to assemble and instead just
take the minimal interface you need to get your work done.

:::java
// Bad.
// - Weigher uses hosts and port only to immediately construct another object.
class Weigher {
 private final double defaultInitialRate;

 Weigher(Iterable<String> hosts, int port, double defaultInitialRate) {
 this.defaultInitialRate = validateRate(defaultInitialRate);
 this.weightingService = createWeightingServiceClient(hosts, port);
 }
}

// Good.
class Weigher {
 private final double defaultInitialRate;

 Weigher(WeightingService weightingService, double defaultInitialRate) {
 this.defaultInitialRate = validateRate(defaultInitialRate);
 this.weightingService = checkNotNull(weightingService);
 }
}

If you want to provide a convenience constructor, a factory method or an external factory
in the form of a builder you still can, but by making the fundamental constructor of a
Weigher only take the things it actually uses it becomes easier to unit-test and adapt as
the system involves.

In methods

If a method has multiple isolated blocks consider naming these blocks by extracting them
to helper methods that do just one thing. Besides making the calling sites read less
like code and more like english, the extracted sites are often easier to flow-analyse for
human eyes. The classic case is branched variable assignment. In the extreme, never do
this:

:::java
void calculate(Subject subject) {
 double weight;
 if (useWeightingService(subject)) {
 try {
 weight = weightingService.weight(subject.id);
 } catch (RemoteException e) {
 throw new LayerSpecificException("Failed to look up weight for " + subject, e)
 }
 } else {
 weight = defaultInitialRate * (1 + onlineLearnedBoost);
 }

 // Use weight here for further calculations
}

Instead do this:

:::java
void calculate(Subject subject) {
 double weight = calculateWeight(subject);

 // Use weight here for further calculations
}

private double calculateWeight(Subject subject) throws LayerSpecificException {
 if (useWeightingService(subject)) {
 return fetchSubjectWeight(subject.id)
 } else {
 return currentDefaultRate();
 }
}

private double fetchSubjectWeight(long subjectId) {
 try {
 return weightingService.weight(subjectId);
 } catch (RemoteException e) {
 throw new LayerSpecificException("Failed to look up weight for " + subject, e)
 }
}

private double currentDefaultRate() {
 defaultInitialRate * (1 + onlineLearnedBoost);
}

A code reader that generally trusts methods do what they say can scan calculate
quickly now and drill down only to those methods where I want to learn more.

Don’t Repeat Yourself (DRY [http://en.wikipedia.org/wiki/Don’t_repeat_yourself])

For a more long-winded discussion on this topic, read
here [http://c2.com/cgi/wiki?DontRepeatYourself].

Extract constants whenever it makes sense

Centralize duplicate logic in utility functions

Manage threads properly

When spawning a thread, either directly or with a thread pool, you need to take special care that
you properly manage the lifecycle. Please familiarize yourself with the concept
of daemon and non-daemon threads (and their effect on the JVM lifecycle) by reading the
documentation for Thread [http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html].
Failing to understand these concepts can cause your application to hang at shutdown.

Shutting down an
ExecutorService [http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html]
properly is a slightly tricky process (see javadoc).
If your code manages an executor service with non-daemon threads, you need to follow this procedure.
ExecutorServiceShutdown
very nicely contains this behavior for you.

If you want to automatically perform cleanup like this when the VM is shutting down, consider
registering with
ShutdownRegistry [https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/application/ShutdownRegistry.java].

Avoid unnecessary code

Superfluous temporary variables.

:::java
// Bad.
// - The variable is immediately returned, and just serves to clutter the code.
List<String> strings = fetchStrings();
return strings;

// Good.
return fetchStrings();

Unneeded assignment.

:::java
// Bad.
// - The null value is never realized.
String value = null;
try {
 value = "The value is " + parse(foo);
} catch (BadException e) {
 throw new IllegalStateException(e);
}

// Good
String value;
try {
 value = "The value is " + parse(foo);
} catch (BadException e) {
 throw new IllegalStateException(e);
}

The ‘fast’ implementation

Don’t bewilder your API users with a ‘fast’ or ‘optimized’ implementation of a method.

:::java
int fastAdd(Iterable<Integer> ints);

// Why would the caller ever use this when there's a 'fast' add?
int add(Iterable<Integer> ints);

 © Copyright 2016.
 Created using Sphinx 1.3.5.

